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Abstract

Atomistic (atom-scale) and coarse-grained (meso-scale) simulations of the structure and dynamics of poly-isoprene melts are compared.
The local structure and chain packing is mainly determined by the atomistic details of the polymer architecture. The large-time dynamics
encountered in NMR experiments can be explained by meso-scale simulations including stiffness. The connecting link between the two
scales is the stiffness which, although being a local property, influences strongly even the long-timescale dynamics. The standard reptation
scenario fails to explain the observed dynamics. We propose strong reptation as a modified reptation scenario in which the local Rouse

motion is absent. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The large abundance of polymers and their variety of
applications make them an interesting target of study in
theoretical material science. The understanding of the
differences and similarities of the various materials is an
important prerequisite for the goal of CAMD — computer
aided materials design. The dream of chemical engineers
would be to develop in the workstation the perfect material
for a given purpose.

To come closer to this distant goal, much effort in various
fields is necessary. As polymeric materials are characterized
by the importance of various length scales, the understand-
ing of the interplay between these scales is of utmost impor-
tance. Methods adapted to all relevant scales are needed
from the experimental as well as from the theoretical or
simulational viewpoint. In simulations, much work has
been directed recently towards the issue of coarse-graining,
the mapping of simulations on different scales, in order to
achieve a unified view of the arising scales [1-5]. In the
present contribution, we show that atomistic simulations of
trans-polyisoprene (PI) [6] can be mapped onto a simple
bead-spring model incorporating excluded volume, connec-
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tivity, and stiffness [7,8]. With this simple model we can
investigate the long-time dynamics of chains in the melt.
There is evidence for reptation which qualitatively changes
with stiffness [9,10]. This connects to some results of
modern NMR experiments [11] which we can reproduce
to a satisfactory extent [8,12]. Thus, simulations on both
scales and especially their connection reveal different
important aspects of the system under study.

The remainder of this contribution is organized as
follows. In Section 2, a short review about our recent results
of atomistic simulations of frans-PI is given. In Section 3,
results of simulations on the meso-scale level, where the
polymer identity is put into a simple stiffness parameter,
are presented. In the concluding section, the importance of
chain stiffness is discussed. We show that matching chain
stiffness is sufficient to allow a mapping for the poly-
isoprene models presented here.

2. Local structure and dynamics — the atomistic scale

The atomistic structure of oligomers of trans-1,4-poly-
isoprene (cf. Fig. 1) was investigated. For details of the
simulations and the interaction potentials see Refs. [6,9].
Here we only note that the simulation box contains 100
oligomers of average length 10 monomers of pure trans-
poly-isoprene which were pre-equilibrated using end-
bridging Monte Carlo [13,14] at the ambient condition of
300 K or the elevated temperature of 413 K. All atomistic
simulations are run at 101.3 kPa.

The main result is, that the local structure is very impor-
tant for properties on the sub-monomer length scale. Fig. 2
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Monomer i+1

Fig. 1. The atomistic structure of trans-1,4-poly-isoprene and its mapping
to a bead-spring model including only excluded volume and stiffness.

shows the local mutual packing of chains by means of radial
distribution functions of the different atoms in the melt. The
carbon atoms show a distinct peak at next neighbor contact.
The hydrogen atoms, in contrast, show very little structure.
Thus, we encounter a carbon backbone with a surrounding
‘hydrogen cloud’. This can be taken as a first hint that not all
details are necessary for every simulation. Still, the hydro-
gen atoms must be taken into account for the C—H vector
reorientation. This is important for direct comparison to
NMR experiments (below). The comparison to experi-
mental raw data is always a good and necessary validation
of simulation models [12].

The local packing is additionally reflected by the direction-
ality of chains at contact. This is shown in Fig. 3 by means of
the spatial orientation correlation function of the double bonds

OCF(r) == Py(r) = <%[3 cos>a(r) — 1]>, 1))

where a(7) is the angle between tangent unit vectors on two
different chains. The distance r is measured between their
centers of mass. The unit vectors may be defined in different
manners, e.g. the direction vector along double bonds in Fig. 3
is one possibility to denote the direction of a monomer.

Direct comparisons to experiments [15—17] and simula-
tions [18,19] on cis-polyisoprene prove that our model is
realistic [6,9].

The reorientation of the carbon—hydrogen vectors is
subject to a two-stage process (cf. Fig. 4). The first stage
is a fast initial decay on the time-scale of the segmental
motion, i.e. the motion on the monomer or sub-monomer
scale. In the second reorientation stage, the reorientation of
the whole oligomer shines through. Overall, reorientation is

g(r)
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Fig. 2. Radial distribution functions of atomistic data of trans-polysoprene.
(a) Carbon—Carbon, (b) Carbon—Hydrogen, and (c) Hydrogen—Hydrogen
RDFs. The carbons show a stronger pronounced structure. A correlation
hole can be seen in subfigure (c).
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Fig. 3. Atomistic mutual orientation (OCF(r)) of double-bonds (dotted) in
trans-polyisoprene in comparison to the fully flexible simple model of
Section 3 (solid). The dashed line is for the atomistic vectors connecting
Cs with C; of the next monomer.

monitored by the following correlation function:
1
Crear = <5[3 cos’ D(1) — 1]> 2

Here, ®(¢) is the angle by which a given bond vector
reoriented in time ¢. The second Legendre polynomial is
chosen because it is the relevant quantity in NMR measure-
ments. The effectiveness of the two stages may be measured
by fitting double exponential decays to the obtained correla-
tion functions. In doing so, satisfactory agreement with
experiments could be achieved (cf. Table 1) if we keep in
mind that the investigated systems are not completely
identical. The experiments were performed on mixtures
with a high cis-PI content and longer chains.
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Fig. 4. Reorientation correlation functions of the methylene C—H vectors at
413 K. Upper: Cs—H, Lower: C,—H.

Table 1

Comparison of the experimental (cis-PI) and simulation (cis and trans-PI)
data for the efficiency of the initial stage of the reorientation process. The
parameter a denotes to which value the reorientation correlation function
(Eq. (2)) decays in the short-time process, i.e. before the long-term expo-
nential relaxation sets in. ay, is the value of 1 — Cy, at 1 ps. In the analysis
of the simulations for cis-polyisoprene a stretched exponential second
process was assumed. The experiments used a range of temperature
between 283 and 363 K [15]. The trans simulations were at 300 K [6]
and the cis simulations at 363 K [19]

trans cis cis

Vector s Agim Agxp
Sim.: this work Sim.: Ref. [19] exp: Ref. [15]
C,-H 0.42 0.28 0.40
C,-H 0.16 0.16 0.17
Cs-H 0.18 0.23 0.48

In Section 3.2, comparisons of the long-time dynamics of
the corresponding simple model with experiments will be
presented.

3. Global structure and dynamics — meso-scale
simulations

Simple polymer models allow one to investigate large-
scale phenomena both in time and space which are not
accessible by atomistic simulations. Therefore many
researchers employ such models to look for rather generic
polymer properties or dynamical concepts [20—25]. One of
these important concepts is reptation [26,27]. The reptation
concept explains much of the molecular weight dependence
of viscosity and the elastic and loss moduli [27]. However,
this model originates from the simple Rouse model [28]
where no stiffness is included or it is subsumed into simple
Kuhn blobs [29].

In order to look for the influence of stiffness, a three-body
potential for stiffening the backbone has been introduced
[7,8,30]

Vangle — l_p
keT kT

[1 = Tty ]- (3)

The angle force constant /, in this choice of units has the
same numerical value as the resulting intrinsic persistence
length (below), and is therefore denoted as [,. The simula-
tions discussed in the following all contain 500 chains of
chain lengths in the range N =5 to N = 200. A detailed
description of all the systems is found in Ref. [8].

3.1. Statics

In polymer melts, excluded volume is commonly
assumed to be screened out. Thus, we can expect that poly-
mer chains behave as random walks [27]. This is true at least
on large length scales. All local interactions only result in
local chain stretching. This is seen easily in the single chain
static structure factors of model chains [7] (cf. Fig. 5). The
random walk appears in the fractal dimension of d; = 2 on
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Fig. 5. Static structure factor of model chains of length 50 monomers
depending on stiffness. Stiffness is given in terms of the persistence length
(see text). ‘Flex” means that no stiffening potential is introduced; excluded
volume leads to a persistence length of /, = 1.

the length scale larger than the persistence length. The frac-
tal dimension expresses itself in the slope of the structure
factor. The chains with stiffness bend over to a weaker slope
indicating a smaller fractal dimension at higher |k|. The
persistence length [, originates from the Kratky—Porod
worm-like chain picture [31]; /, measures the decay length
of bond correlations along the chain backbone. Thus, static
properties of different models and chains are easily mapped
onto each other by the simple blob concept where all local
interactions are put into one single length scale, which then
allows a renormalization onto flexible chains with the blobs
acting as coarse-grained monomers. The size of the Kuhn
blob Ik and the persistence length [, differ only by the
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Fig. 6. Static mutual chain packing of chains of different stiffness described
by OCF(r) (compare Eq. (1)). The stiffer chains order more strongly paral-
lel. Long range isotropy is preserved (OCF — 0, r — o0).

constant factor of 2 although they arise from different
concepts.

Still, even in chains of complete flexibility, i.e. no three-
body potential, there is a small but visible alignment
between neighboring chains, similar to that shown in
Figs. 3 and 6 on the length scale of about three chain
diameters [24]. This is evidence that the very simple ansatz
of model chains only incorporating connectivity comes to its
limits as soon as many-body interactions become important.
As we have seen in Section 2, local interactions strongly
affect the mutual packing of chains. If chain stiffness is
increased, chain order becomes stronger [7] (cf. Fig. 6)
without leading to an overall nematic order. This ordering
is a strictly local phenomenon, proven by the fact that there
is no chain length dependence whatsoever [24].

3.2. Dynamics

For simple flexible bead-spring chains, the reptation
concept was successfully validated by several simulations
[22,23,25]. However, NMR experiments of polymer reor-
ientation show that this model cannot describe all polymers
satisfactorily. For poly-(dimethylsiloxane), PDMS, which is
known to be very flexible, the results of double quantum
NMR can be explained by the simple reptation model [32]
whereas for polybutadiene this simple explanation shows
strong deficiencies [11]. For this purpose, the dependence
on stiffness of the reorientation behavior of entangled melts
was investigated [8]. With increasing stiffness the reorienta-
tion slows down tremendously going hand in hand with a
decreasing entanglement length and shrinking tube diameter
[10]. The reorientation of backbone segments is algebraic
on short time scales (cf. Fig. 7). This algebraic dependence
Cieor o< 1 7 is the same as found in NMR experiments. The
exponents of y = 1/4 and -y = 1/2 as seen in Fig. § are both
found. However, there is a qualitative change in dynamics
with chain length as the entanglement length is crossed. The
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Fig. 7. Algebraic reorientation of segments of the chain backbone depend-
ing on chain stiffness (chain length: 200 monomers).
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Fig. 8. Comparison of simulated (chains of length 200 and /, = 5; lines) and
experimental (symbols) [11] reorientation correlation functions. For the
experiments time—temperature superposition is assumed.

exponent of y = 1/4 is not found in unentangled chains. In
diffusion, the entanglement length scale is also found.
Chains longer than /. diffuse clearly slower than predicted
by simple Rouse motion (Fig. 9). According to the Rouse
model, the overall diffusion is expected to be D oc N
This would correspond to a horizontal straight line in Fig.
9. Reptation leads to D oc N ~2 which we find for longer
chains. The crossover point can be taken as a definition
for the entanglement length [10,22] (Table 2). We observe
that the entanglement length decreases with increasing
persistence length. /. and [, are neither independent nor
linearly dependent on each other. This makes it impossible
to renormalize stiff chains onto the simple bead-spring
model, as only one length scale could be scaled away. The
influence of stiffness survives on very long length scales.
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Fig. 9. Diffusion coefficient of chains depending on chain length and
stiffness. In the given representation Rouse behavior would give a
straight horizontal line.

Table 2
Entanglement monomer number N, depending on persistence length [,
determined by the change of diffusion behavior with chain length [10]

A N,
1 32
15 15
3 8
5 6

The entanglement length /. describes the anisotropy of
motion of a chain due to the temporary network of its
uncrossable neighbors. A polymer chain has to move predo-
minantly along its backbone as transversal motion is
hindered by its neighbors, leading to an effective tube (cf.
Fig. 10). This is measured by the correlation of directions of
the chain (static #(7)) with the motion of the monomer in
time (dynamic ¥(¢ — 1)) [9,10]

1
[T = (5o - 1) )

This function measures the correlation between the static
direction of a chain segment at a given point in time with the
direction of its dynamic motion in the time thereafter. Thus,
it shows that chain segments move in the beginning prefer-
ably along their contour. This is exactly what reptation is
about. Increasing stiffness supports this effect because the
stiffness suppresses the transversal motion even further. On
short time-scales, where in the standard reptation picture
isotropic motion is still possible, the local stiffness disallows
this motion. Thus, the chains have to reptate from the very
beginning. This is illustrated by the mean-squared displace-
ments of inner monomers ({x°) cf. Fig. 11). According to the
standard reptation picture one expects the scenario we find
here only for flexible chains. On short time-scales a Rouse
motion [28] is found ((x*) oc 1*), then the Rouse motion is

constrained to the tube ((x*) oc *?%). After the internal
0.3
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Fig. 10. Correlations of monomer motion with the direction of the backbone
depending on stiffness. Solid lines: ¢ = #,, dashed lines t = ¢, + 7/2.
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Fig. 11. Mean squared displacements of central monomers in a chain

depending on chain stiffness. For clarity lines indicating the slopes corre-
sponding to t°** and ¢*° are shown additionally.
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degrees of freedom are relaxed, the chain as a whole moves
in the tube ((x*) oc /*%) and finally the chains reach free
diffusion ((x?>) o r). The other extreme we now see for
chains with a persistence length of five monomers. The
first two dynamical regimes are missing completely, as
the Rouse motion is no longer the correct description of
the polymer especially on short time and length scales
(see Fig. 12). This regime we like to call strong reptation.
Similar results have been obtained by Morse [33-35] for
chains of stronger stiffness, who introduced the terms
loosely entangled and strongly entangled for the different
systems, respectively.

Note the intersections of the different curves in Fig. 11.
This shows that there are regimes where stiffer chains
diffuse even faster as the entanglement length and tube
diameter come down tremendously. This can also be seen
if we look at dynamical structure factors [10] which can
measure the tube diameter.

If the Rouse model was applicable in all sub-figures of
Fig. 12, all curves would coincide in that scaling as the
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Fig. 12. Normalized correlation functions of Rouse modes X, of stiff and flexible chains of various stiffnesses: (a) 1-50; (b) 3-50; (c) 5-200; (d) 1-350).
The notation means [, — N with persistence length and chain monomer number. The Rouse model breaks down with increasing length and stiffness.
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Rouse modes
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with f?i the position of bead i and N the monomer number,
would be the true eigenmodes of the system. However, we
see that with increasing stiffness and chain length the model
shows deficiencies. Because of stiffness the high modes
(local motion) start to be affected and for long chains the
entanglements hinder the low modes (large scale motion).
As the entanglement length shrinks with stiffness, the region
of validity of the Rouse regime vanishes between the
entangled motion on the one side and the local stiffness on
the other.

4. Conclusions: stiffness — a decisive characteristics

Two different polymer models were introduced. A bead-
spring model with stiffness and a fully detailed atomistic
model. Both are validated against different experiments.
The connecting link between the models is the backbone
stiffness which survives from the very local scale to the
global scale, in which often only entanglements are
expected to be important. In Fig. 13 one sees the success
of the mapping. The atomistic chains at 413 K and model
chains (both of length 10) are compared (one monomer to
one monomer mapping). The mapping is accomplished by
rescaling (squared) lengths with the mean-squared end-to-
end distance. Time-scales are fixed by the center-of-mass
diffusion. Then the figure shows the comparative reorienta-
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Fig. 13. The reorientation of atomistic chains and simple chains (both
of length 10 monomers) in comparison. On the left hand side the
lower (C;) and the upper (C,) line are atomistic vectors connecting
the indicated monomers. The line on the right hand side (continuing
the other two lines nicely) corresponds to the simple model with
persistence length [, = 1.5 similar to the persistence length of the
polyisoprene model. To suppress end-effects the terminal carbons
were not taken into account.

tion of local monomer-to-monomer vectors. Thus, this study
opens one possible route to polymer coarse graining. First,
simulate an atomistic melt (of oligomers) in full detail; there
all the very local observables (sub-monomer to monomer-
scale) can be investigated: radial distribution functions,
orientation correlations, even structure functions and
reorientation times. Also one has to determine the persis-
tence length of the polymer on this scale. This is then taken
as an input to the model on the next length scale, so that part
of the polymer identity is preserved and a tremendous simu-
lation speedup is possible at the same time. At this scale,
long-time dynamic phenomena (e.g. reptation) and large-
scale static structure such as the overall Gaussian random
walk distribution can be examined.

However, one has to be very careful with this mapping.
There are polymers for which this route is too simple-
minded, especially if the monomer is strongly anisotropic
or has special or bulky side-groups. More elaborate methods
have to be applied in those cases [1,4]. Our method can be
applied to dense melts of simple hydrocarbon polymers and
allows in this case a very strong speedup and a look at real
large-scale phenomena. With the other methods typically an
intermediate scale between the two presented scales here is
introduced as additional length scales can become impor-
tant. Still, for dynamic issues it is not possible even on the
largest scale to explain everything with simple chains only,
at least stiffness has to be taken into account.
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